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Spontaneous Compactification and Quantized Charges 
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We modify the Weinberg formalism relating gauge coupling constants to averaged 
circumferences of compact spaces by divorcing it from its original Kaluza-Klein 
geometrical context. The resulting more versatile formalism is then used to prove 
a theorem giving a formula for a new kind of quantized charge for the case of 
spontaneous compactification, defined as the situation where the solutions of 
the Euler-Lagrange field equations are periodic in one or more of the parameters 
of the noncompact invariance group of the action. The theorem is applied to 
the example of periodic waves. 

1. I N T R O D U C T I O N  

W e i n b e r g  (1983) cons ide r ed  a (4 + N ) -  d i m e n s i o n a l  space  with coord in -  
ates which  cou ld  be s e p a r a t e d  into the coo rd ina t e s  x ~ o f  o rd ina ry  space - t ime  
p lus  the  coo rd ina t e s  yn o f  a c o m p a c t  N - d i m e n s i o n a l  m a n i f o l d  M. He 
showed ,  in this  Ka luza  (1921) -Kle in  (1926) type  theory ,  tha t  the  gauge  
coup l ing  cons tan t s  a s soc ia t ed  with the i somet ry  g roup  o f  the c o m p a c t  space  
are  given by  

2~-K 
g~ - N~(s2(e,  y))~/2 (1) 

where  K 2--- 16~rG and  G is the N e w t o n i a n  grav i ta t iona l  constant .  The 
d e n o m i n a t o r  inc ludes  the  rms c i rcumferences  o f  M a long  cer ta in  curves 
def ined  by  Weinbe rg  and  the va luedness  Ne of  the  r ep resen ta t ion  used.  
This  genera l izes  ear l ie r  work  by  Kle in  (1926) and  by  Sour iau  (1963) re la t ing 
the  e lec t ron ic  charge  to the  rad ius  o f  the  fifth d imens ion  in the  U(1)  case 
to inc lude  more  genera l  n o n - A b e l i a n  theor ies  (DeWit t ,  1964; Scherk  and  
Schwarz ,  1975; Cho  and  F reund ,  1975; Cho ,  1975; C r e m m e r  and  Scherk,  
1976; F r e u n d  and  Rubin ,  1980; Wit ten,  1981; Cremmer ,  1982; Duff, 1982; 
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Salam and Strathdee, 1982; Duff and Toms, 1982) with more than one 
compact  dimension. K enters (1) because Weinberg considers a geometrical 
theory with an action which is a generalization of the usual Hilbert action 
of general relativity to 4 +  N dimensions. The compact  space M has an 
arbitrary scale factor associated with it, so that (1) does not allow the 
explicit calculation of  individual coupling constants but, ultimately, only 
their ratios. 

For completeness we should mention that grand unified theories (Ross, 
1985) also determine coupling constants in some sense. In the general case, 
the diagonal generators span an Abelian subgroup which is isomorphic to 
[R(1)]P • [U(1)]  q. For a compact  gauge group we get only [ U(1)] n. This 
leads the "charges"  associated with that compact  group to have ratios which 
are always the ratio of  integers. 

We will show below that much of  the Weinberg formalism relating 
coupling constants to the circumference of  a compact  space also holds if 
we abandon the geometrical Kaluza-Kle in  context. The Kaluza-Kle in  
approach is appropriate  if  the gauge group is fundamental  and therefore 
possibly related to the geometry of  a higher-dimensional manifold. In the 
following, we will be particularly interested in a theory whose gauge group 
is noncompact  but whose solutions are periodic in at least one of the 
parameters  of  the noncompact  group. We refer to this situation as "spon-  
taneous compactif ication" in analogy with spontaneous symmetry breaking. 
Our use of  this term differs from the more usual usage where a noncompact  
manifold actually physically curls up into a compact  one as in superstring 
theory or in the work of  Chodos and Detweiler (1980). In our case the 
resulting effective compact  group arising from the assumed periodicity has 
nothing to do with fundamental  physics or higher-dimensional geometry, 
and K therefore does not enter in. K in fact is replaced by a constant with 
the dimensions of  action. We will use the Weinberg formalism but without 
the Kaluza-Kle in  context to prove a theorem that we get a new kind of 
quantized coupling constant obeying a formula analogous to (1) in the case 
of  spontaneous compactification. 

As an application of  our formalism, we will show that periodic waves 
are an effective compactification of T(4) to U(1). The four-momentum is 
the quantized charge. We also speculate on other applications. 

2. RELATING C O U P L I N G  CONSTANTS TO G R O U P  
C I R C U M F E R E N C E S  N O N G E O M E T R I C A L L Y  

We would now like to consider the Weinberg (1983) formalism relating 
gauge coupling constants to rms compact  space circumferences, but taken 
out of  the Kaluza-Klein  geometrical context. This is relevant for what we 
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will do below and is also important in its own right since Kaluza-Klein 
theory has severe chirality problems (Witten, 1981) if one tries to use it for 
the unification of physics. Weinberg considers the situation where all eigen- 
value of e~t~, for an arbitrary fixed vector e ~, are integer multiples of the 
eigenvalues ge of lowest nonzero absolute value. The t, are the Hermitian 
generators of the isometry groups of M in a given representation which is 
Ne valued for the subgroup generated by e~t~. The vector e ~ is normalized 
according to 

t~t~e~e t3 = 1 (2) 

Weinberg shows that ge is the physical gauge coupling constant and is 
related to the circumference of M associated with a given e" and starting 
point Yo by 

2"/7" ~ 
s( e, Yo) = ~ [g,,.(Yo)~](Yo)~'~(yo)e~ et3] l/2 

g e l ' %  

(3) 

where ~,,, (y) is the metric of the compact space with Killing vectors ~,(y).  
So far Weinberg has just used group theory. The Kaluza-Klein geometrical 
theory provides the normalization of the Killing vectors appearing in (3) 
by giving 

( ~ ( y ) ~ ( y ) g . ~ ( y ) ) =  K26~ (4) 

where the brackets denote an average over the compact manifold M. If (3) 
is averaged over the starting points Yo and (2) and (4) are used, Weinberg's 
result (1) follows. 

We see from the above that we can keep much of the Weinberg 
formalism and yet completely divorce it from the Kaluza-Klein formalism 
by abandoning (4) and replacing it with 

n t i t  ~ - -  

( ~ ( y ) ~  (y )g .~ (y ) )  - ~7-6~ (5) 

where ~7 is a constant unrelated to any geometrical consideration. We can 
always pick and normalize Killing vectors to satisfy (5). For us, ~7 is an 
arbitrary free parameter. The compact space now has lost any geometrical 
meaning it once had. Averaging (3) over the starting points of the paths 
and using (5) and (2) now gives 

2~r~7 
& - Ne(s2(e, y))~/2 (6) 

We still have quantized charges related to the circumference of the compact 
space. Since the compact space has an arbitrary scale factor in it anyway, 
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using an arbitrary ~ rather than K from Kaluza-Kle in  theory adds no real 
arbitrariness to the result. In practice, only ratios of  coupling constants 
can be determined in either case. Equation (6) is more versatile than (1) 
since it is released from the limitations of  Kaluza-Kle in  theory. We apply 
this result in the next section to the situation where the compact  space 
arises not from the fundamental  geometry,  but from "spontaneous  
compactification." 

3. S P O N T A N E O U S  C O M P A C T I F I C A T I O N  

We have the following theorem. 

Theorem. Assume that the action of  a field theory is invariant under a 
noncompact  continuous Lie group G. We then have a conserved Noether  
(1918) current and conserved charges QA. Also assume that we restrict our 
attention to solutions (fields) of  the Euler-Lagrange field equations which 
are exactly periodic in terms of at least one of  the parameters e of  G, so 
that the fields return to their original values when e ~ e + P. Let Q be the 
specific conserved Noether  charge associated with invariance of  the action 
under  changes in e. We then have 

Q = A l P  (7) 

where A is a constant with dimensions of  action and Q is now a quantized 
as well as conserved charge. 

Proof. We refer to this situation where the solutions (fields) of  a gauge 
theory are exactly periodic in at least one parameter  of  a noncompact  
invariance group of the action as spontaneous compactification. In a given 
physical situation, such periodic fields may or may not exist, of  course. We 
give an example later. Due to the assumed periodicity, as far as these fields 
are concerned, a subgroup of  the noncompact  invariance group behaves as 
though it were compact  and in fact U(1). This subgroup is associated with 
the parameter  e in the theorem. As far as these fields are concerned, the 
action itself will also be invariant under this compactified group. Thus, we 
satisfy the compactness requirements of  the development  in the preceding 
section and can apply that formalism to the present situation. The compact  
space S(1) is isomorphic to U(1) and can be taken to be the compact  
manifold in Weinberg's formalism. This compact  manifold arises from the 
assumed periodicity and not fundamental ly from the geometry. Thus, 
Kaluza-Kle in  theory should play no role, but the modified version of 
Weinberg's  formalism developed in the preceding section will apply. We 
note that in (6), Ne = 1 since we have S(1) and (s2(e, y)}1/2 is simply the 
circumference of  the S(1) space. This circumference is known in the present 
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case and is P since the fields return to their original values when e ~ e + P. 
We are letting e itself serve as the coordinate of  the compact  S(1) space. 
ge in (6), as in Weinberg's  work, is a quantized coupling constant or charge. 
Since Q is the conserved Noether  charge associated with invariance of the 
action under  changes in e, we can identify ge in (6) as Q when applying 
(6) to this specific situation of spontaneous compactification. Inserting these 
various quantities into (6) then gives, for the periodic fields under consider- 
ation, that 

27rr 1 
Q - (8) 

P 

is the normalization constant for the Killing vectors appearing in (5). If  
we identify the constant A in the theorem with 2~r,?, we have proven the 
theorem with the exception of  the statement that A or ~7 has dimensions 
of  action, which we now show. 

The rl in (5) and (6) in the preceding section is completely arbitrary. 
When we apply that formalism to the present situation of spontaneous 
compactification, however, ~ in (8) must have dimensions of  action because 
of  the way Q and P are defined and are related to one another. Let us now 
show this. Consider  an action 

S = i '~(6~ O~ d4X (9) 

which is invariant under an internal symmetry transformation of the field 
variables [we follow Ross (1985)] 

r  - ,  r  + F~(x) ~o/ (10) 

where &o k are group parameters.  The variation of the action can be written 

6S= - f O,[J~6w k] d4x (11) 

where the conserved Noether  (1918) current is given by 

- 0 ~  
J ~  - - -  F ;  ~ (12) 

a(o-q~ ~) 

and the associated conserved charge is 

Qk = f J~ a3x (13) 

Space-time symmetries can be treated similarly. Relating this to our work 
above gives our Q~- Qk and our group parameter  e --- &o k. Also, our P has 
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the same dimensions as e, so that (11) and (13) immediately give 

~S ~ Q P  (14) 

in units. But 2~7---A has the dimensions of  Q P  from (8), so that A 
in (7) has the dimensions of action. This completes our proof  of the 
theorem. �9 

Note that in the defining relation (5) for B -= A / 2 ~ ,  g, nm, the metric of 
our compact S(1) space, has a scale factor which is determined, since P 
represents the circumference of  the compact space. The ~:~ Killing vectors, 
however, are essentially any constant angle in the S(1) space. Thus, there 
is nothing to fix their normalization and A or ~7 is unspecified. We end up 
with a situation similar to the Kaluza-Klein work of  Weinberg. Weinberg 
has a known 7/--- K from the Kaluza-Klein geometry but an unknown scale 
of  the compact space. This scale may perhaps be fixed by quantum consider- 
ations (Candelas and Weinberg, 1984). In our work, on the other hand, we 
have a known scale or circumference of  our S(1) space from the known 
periodic dependence of  the fields on the group parameter, but an unknown 
7. We have shown above that periodic dependence of  the fields on a 
parameter o fa  noncompact  symmetry group leads to a new kind of quantized 
charge, analogous to the charges of Weinberg for the compact case. We 
look at a specific example in the next section. 

4. APPLICATION TO TRANSLATIONAL INVARIANCE 
A N D  P E R I O D I C  W A V E S  

Consider an action which is Poincar~ invariant and in particular 
invariant under the noncompact  continuous four-dimensional translation 
group T(4). As is well known, the associated conserved Noether charge is 
the four-momentum P~. Now consider solutions to the field equations which 
are periodic plane waves. The periodicity must be exact. Let them travel in 
the +x  direction for definiteness. The plane wave is then given by any 
function f (~) ,  where ~ = - x - c t  if we further assume that the fields are 
massless and travel at the speed of light. From the plane wave periodicity, 
we have f ( ~ ) = f ( ~ + A ) .  Consider a translation in the x direction, for 
example. These solutions to the field equations are periodic in one of the 
parameters of  the original noncompact T(4) symmetry group, namely that 
having to do with displacements in x. Our theory can then be applied. The 
conserved Noether  charge Q corresponding to invariance under x transla- 
tion is now p~, the periodicity interval P in the theorem is A, and (7) gives 

A 
p~ = -- (15) 

A 
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where A is a constant of  dimensions of  action and Px is quantized. One can 
view A as a free parameter  which one finds experimentally to be equal to 
Planck's constant, at least in this example. As mentioned above, there is 
nothing in this formalism which fixes the magnitude of A. Its dimensions 
are fixed as those of  action, however. The result (15) is rather remarkable,  
especially since our theorem says that Px must be quantized, yet we are 
doing classical physics. We get a quantized Px because our periodic wave 
is an identification of the x spatial dimension modulo the wavelength, i.e., 
this spatial dimension essentially becomes a circle S( I )  as far as the wave 
is concerned and the translation group becomes compactified. Compact  
groups give quantized charges. For periodic plane waves moving in other 
directions, we can easily generalize the above result and write 

A 
P~, =-~-~ k~ (16) 

where k.  is the wave vector. 
Other  applications of  this spontaneous compactification formalism 

arise whenever fields are exactly periodic in one or more parameters  of  a 
noncompact  invariance group of the action. For example,  physics is 
invariant under the noncompact  Poincar6 group and in particular under 
Lorentz boosts. The conserved quantities corresponding to both rotations 
and boosts are e'~OY~x~,P~. These include angular momentum for the compact  
rotations and the initial values ofxo for the boosts, if we also use conservation 
of  P,  f rom translational invariance. If  we could arrange a physical situation 
where the solutions to the field equations were periodic in the boost para- 
meters, ~; = tanh -~ vJc ,  then our theorem says that the conserved quantities 
above corresponding to the boosts would become quantized as in (7). 
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